Estimation in linear errors-in-variables models with unknown error distribution
نویسندگان
چکیده
منابع مشابه
On Local Linear Estimation in Nonparametric Errors-in-variables Models
Local linear methods are applied to a nonparametric regression model with normal errors in the variables and uniform distribution of the variables. The local neighborhood is determined with help of deconvolution kernels. Two different linear estimation method are used: the naive estimator and the total least squares estimator. Both local linear estimators are consistent. But only the local naiv...
متن کاملEstimation of Censored Linear Errors-in-Variables Models∗
This paper deals with a linear errors-in-variables model where the dependent variable is censored. A two-step procedure is proposed to derive the moment estimator of the model and the corresponding asymptotic covariance matrix. The results cover the moment estimation of the usual (error-free) Tobit model as a special case. It is shown that, under normality and a certain identifying condition, t...
متن کاملOn Errors-in-variables Estimation with Unknown Noise Variance Ratio
We propose an estimation method for an errors-in-variables model with unknown input and output noise variances. The main assumption that allows identifiability of the model is clustering of the data into two clusters that are distinct in a certain specified sense. We show an application of the proposed method for system identification.
متن کاملEfficient Estimation of Errors-in-Variables Models
The paper addresses the discrete-time linear process identification problem assuming noisy input and output records available for the parameter estimation. The efficient algorithms are derived for the simultaneous estimation of the process and noise parameters. Implementation techniques based on matrix and polynomial decompositions are given in details resulting in estimation algorithms with re...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2020
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/asaa025